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Abstract

The planning of sample size for research studies often focuses on obtaining a significant result given a specified level of
power, significance, and an anticipated effect size. This planning requires prior knowledge of the study design and a statistical
analysis to calculate the proposed sample size. However, there may not be one specific testable analysis from which to derive
power (Silberzahn et al., Advances in Methods and Practices in Psychological Science, 1(3), 337356, 2018) or a hypothesis to
test for the project (e.g., creation of a stimuli database). Modern power and sample size planning suggestions include accuracy
in parameter estimation (AIPE, Kelley, Behavior Research Methods, 39(4), 7155-766, 2007; Maxell et al., Annual Review of
Psychology, 59, 537-563, 2008) and simulation of proposed analyses (Chalmers & Adkins, The Quantitative Methods for
Psychology, 16(4), 248-280, 2020). These toolkits offer flexibility in traditional power analyses that focus on the if-this,
then-that approach. However, both AIPE and simulation require either a specific parameter (e.g., mean, effect size, etc.) or a
statistical test for planning sample size. In this tutorial, we explore how AIPE and simulation approaches can be combined
to accommodate studies that may not have a specific hypothesis test or wish to account for the potential of a multiverse of
analyses. Specifically, we focus on studies that use multiple items and suggest that sample sizes can be planned to measure
those items adequately and precisely, regardless of the statistical test. This tutorial also provides multiple code vignettes and

package functionality that researchers can adapt and apply to their own measures.
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An inevitable decision in almost any empirical research is
deciding on the sample size. Statistical power and power anal-
yses are arguably some of the most important components
in planning a research study and its corresponding sample
size (Cohen, 1990). However, if reviews of transparency and
openness in research publications are any clue, researchers
in the social sciences commonly fail to implement proper
power analyses as part of their research workflow (Hardwicke
et al., 2020, 2022). The replication “crisis” and credibility
revolution have shown that published studies in psychology
are underpowered (Korbmacher et al., 2023; 2015; 2018.
Potential reasons for underpowered studies include question-
able research practices (John et al., 2012; but see Fiedler
& Schwarz, 2016), weak psychological theories (Proulx &
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Morey, 2021; Szollosi & Donkin, 2021), testing multiple
hypotheses (Maxwell, 2004), and poor intuitions about power
(Bakker et al., 2016).

Pre-registration of a study involves outlining the study
and hypotheses before data collection begins (Chambers et
al., 2014; Nosek & Lakens, 2014; Stewart et al., 2020), and
details of a power analysis or limitations on resources are
often used to justify the pre-registered sample quota (Pow-
nall et al., 2023; van den AkKer et al., 2023a,b). Given the
combined issues of publish-or-perish and that most non-
significant results do not result in published manuscripts,
power analysis may be especially critical for early career
researchers to increase the likelihood that they will identify
significant effects if they exist (Rosenthal, 1979; Simmons et
al., 2011). Justified sample sizes through power analyses may
allow for publication of non-significant, yet well-measured
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effects, along with the smallest effect of interest movement
(Anvari & Lakens, 2021), potentially improving the credibil-
ity of published work.

A recent review of power analyses found - across
behavioral, cognitive, and social science journal articles -
researchers did not provide enough information to under-
stand their power analyses and often chose effect sizes that
were unjustified (Beribisky et al., 2019). One solution to this
power analysis problem is the plethora of tools made avail-
able for researchers to make power computations accessible
to non-statisticians; however, a solid education in power is
necessary to use these tools properly. G*Power is one of
the most popular free power software options (Erdfelder et
al., 1996; Faul et al., 2007) that provides a simple point and
click graphical user interface for power calculations (how-
ever, see Brysbaert, 2019). Web-based tools have also sprung
up for overall and statistical test specific sample size plan-
ning, including https://powerandsamplesize.com, https://
jakewestfall.shinyapps.io/pangea/, https://pwrss.shinyapps.
io/index/, and https://designingexperiments.com (Anderson
et al., 2017). R-coding-based packages, such as pwr (Cham-
pely et al., 2017), faux (DeBruine, 2021), simr (Green &
MacLeod, 2016), mixedpower (Kumle & DejanDraschkow,
2020), and SimDesign (Chalmers & Adkins, 2020), can be
used to examine power and plan sample sizes, usually with
simulation. Researchers must be careful using any toolkit, as
errors can occur with the over-reliance on software (e.g., it
should not be a substitute for critical thinking, Nuijten et al.,
2016). Additionally, many tools assume data normality, place
an overemphasis on statistical significance, and may rely on
simplified assumptions that do not reflect the actual data.
Further, the social sciences often ignore robust statistical
methods as an option for analysis (Erceg-Hurn & Mirose-
vich, 2008; Field & Wilcox, 2017), and the implementation
of these analyses in power software is somewhat sporadic.
Finally, when computing sample-size estimates, it is impor-
tant to remember that the effect sizes are estimates, not exact
calculations guaranteed to produce a specific result (Batter-
ham & Atkinson, 2005). For example, it is hard to estimate
all parameters from a study accurately, and if any were incor-
rect, then the sample size estimate tied to that specific level
of power may be incorrect (Albers & Lakens, 2018).

Changes in publication practices and research design have
also created new challenges in providing a sample size plan
for a research study. While statistics courses often suggest
that a specific research design leads to a specific statistical
test, meta-science work has shown that given the same data
and hypothesis, researchers can come up with multiple ways
to analyze the data (Coretta et al., 2023; Silberzahn et al.,
2018). Therefore, a single power analysis corresponds only
to the specific analysis the researcher expects to implement,
and typically, the final expected data ignores any processing
pipeline the researcher may use. Analyses may evolve during
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the research project or be subject to secondary analysis; thus,
power and sample size estimation based on one analysis is
potentially less useful than previously imagined. Further,
research projects often have multiple testable hypotheses,
but it is unclear which hypothesis or test should be used to
estimate sample size with a power analysis. Last, research
investigations may not even have a specific, testable hypoth-
esis, as some projects are intended to curate a large dataset
for future reuse (i.e., stimuli database creation, Buchanan et
al., 2019).

In light of these analytical (or lack thereof) concerns, we
propose a new method to determine a sample size in cases
where a more traditional power analysis might be less appro-
priate or even impossible. This approach combines accuracy
in parameter estimation (AIPE, Kelley, 2007; 2008 and data-
driven Monte Carlo simulation on pilot data (Rousselet et al.,
2022). This method accounts for a potential lack of hypoth-
esis test (or simply no good way to estimate an effect size
of interest), and/or an exploratory design with an unknown
set of potential hypotheses and analytical choices. Specifi-
cally, this manuscript focuses on research designs that use
multiple items to measure the phenomena of interest. For
example, semantic priming is measured with multiple paired
stimuli (Meyer & Schvaneveldt, 1971), which traditionally
has been analyzed by creating person or item-level averages
to test using an ANOVA (Brysbaert & Stevens, 2018). How-
ever, research implementing multilevel models with random
effects for the stimuli has demonstrated potential variability
in their impact on outcomes; thus, we should be careful not
to assume that all items in a research study have the same
“effect”.

Accuracy in parameter estimation

AIPE shifts the focus away from finding a significant p value
to finding a parameter that is accurately measured. As dis-
cussed in Kelley and Maxwell (2003), one can estimate the
sample size necessary to obtain precision in the estimation of
population parameters. Precision is defined as a researcher-
defined, sufficiently narrow, confidence interval in AIPE. For
example, researchers may wish to detect a specific mean in
a study, M = .35. They could then use AIPE to estimate
the sample size needed to find a sufficiently narrow window
around that mean. Therefore, they could decide that suffi-
ciently narrow could be defined as a width of .30 or .15 on
each side of the mean. They would then estimate the number
of participants needed to find that level of precision.
Hoekstra et al. (2014) argued that confidence intervals are
often misinterpreted (see Miller & Ulrich, 2016 for critique
of this claim; see Morey et al., 2016 for original authors’
response), and AIPE procedures are not designed to spec-
ify sample size for a hypothesis-driven decision (i.e., the
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confidence interval does not include a specific value of com-
parison). Instead, AIPE focuses on estimating the sample size
necessary to ensure precise population parameters. Note that
any particular confidence interval is not of interest within our
procedure, but rather how to define a sufficiently narrow win-
dow that a researcher should use for sample size estimation
when designing studies with multiple items.

Monte Carlo simulation

One form of data simulation is data-driven Monte Carlo simu-
lation, which involves using data obtained to simulate similar
datasets by drawing from the original data with replacement
(Efron, 2000; Rousselet et al., 2022). This type of simulation
allows one to calculate parameter estimates, confidence inter-
vals, and to simulate the potential population distribution,
shape, and bias. Simulation is often paired with re-creating
a data set with a similar structure for testing analyses and
hypotheses based on proposed effect sizes or suggested pop-
ulation means. Generally, we would suggest starting with
pilot data of a smaller sample size (e.g., 20 to 50, see below
for tests to determine the appropriate minimum) to under-
stand the variability in potential items used to represent your
phenomenon, especially if they are to be used in a larger
study. However, given some background knowledge about
the potential items, one could simulate example pilot data to
use in a similar manner in our suggested procedure.

Pilot or simulated data would be used to estimate the vari-
ability within items and select a sufficiently narrow window
for overall item SE for AIPE sufficiently narrow windows.
The advantage to this method over simple power estimation
from pilot effect sizes is the multiple simulations to average
out potential variability, as well as a shift away from tradi-
tional NHST to parameter estimation. Simulation would then
be used to determine how many participants may be neces-
sary to achieve a dataset wherein as many items as required
meet the pre-specified, well-measured criterion.

Sequential testing

One would set a minimum sample size based on our pro-
cedure steps below to ensure an appropriate minimum for
precise estimates. After meeting the minimum sample size,
researchers could then use sequential testing to estimate their
parameter of interest after each participant’s data or at reg-
ular intervals during data collection to determine whether
they have achieved their expected narrow window around
that parameter. A stricter criterion could be defined for a stop-
ping rule (i.e., the criterion that specifies when data collection
ends, such as reaching a maximum sample size or achieving a
desired level of precision). By defining each of these compo-
nents, researchers could ensure a feasible minimum sample

size, a way to stop data collection when goals have been met,
and a maximum sample size rule to ensure an actual end
to data collection. The maximum stopping rule could also
be defined by resources (e.g., two semesters of data collec-
tion), but should nevertheless be included. The advantage of
sequential testing lies within research studies that use a ran-
dom selection of items across participants (i.e., participants
do not see all items). Across participants, data can be shifted
to items with more uncertainty to increase the precision of
estimates for those items. Sequential testing is not a neces-
sary component of our proposed procedure, but we outline
how to use the sample size estimates below to set minimum,
maximum, and stopping rules. If researchers show all items
to participants, they could simply select one of the proposed
estimates for their minimum required sample size. There-
fore, we propose a method that leverages the ideas behind
AIPE, paired with Monte Carlo simulation, to estimate the
minimum and maximum proposed sample sizes and stop-
ping rules for studies that use multiple items with expected
variability in their estimates. Sequential testing and sequen-
tial AIPE methods have a substantial literature of their own
(Chow & Chang, 2006; Kelley, 2007; Kelley et al., 2018;
Siegmund, 1985; Wald, 1992), and our approach is comple-
mentary rather than a replacement for those frameworks.

Proposed method for sample size planning

Building on these ideas, we suggest the following procedure
to determine a sample size for each item:

Define pilot data and cutoff criterion

1) Usepilotdatathat closely resembles the data you intend to
collect. This dataset should contain items that are identical
or similar to those that will be implemented in the study.
In this procedure, it is important to ensure that the data is
representative of a larger population of sampled items that
you intend to assess. Generally, pilot data sample sizes
will be smaller than the overall intended project (e.g.,
20 to 50), as the goal would be to determine how many
participants would be necessary to reach a stable standard
error for the accurately measured narrow window rule.

2) For each item in the pilot data, calculate the standard error
(SE). Select a cutoff SE that defines when items are con-
sidered accurately measured. The simulations described
in the Data Simulation section will explore what criterion
should be used to determine the cutoff SE from the pilot
data. Similar concepts appear in classical estimation work
where lower bounds of population standard deviations are
used as benchmarks (Chattopadhyay & Banerjee, 2021;
Mukhopadhyay, 1980).
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Monte Carlo samples

3)

Sample, with replacement, from your pilot data using
sample sizes starting at a value that you consider the mini-
mal sample size per item, and increase in small units up to
a value that you consider the maximum sample size. We
will demonstrate example maximum sample sizes based
on the data simulation below; however, a practical max-
imum sample size may be determined by time (e.g., one
semester data collection) or resources (e.g., 200 partici-
pants worth of funding). As for the minimal sample size,
we suggest using 20 as a reasonable value for simulation
purposes. For each sample size simulation, calculate the
SE for each item. Use multiple simulations (e.g., n = 500
to 1000) to avoid issues with random sampling variabil-

ity.

Determine minimum, maximum sample size

4)

5)

Use the simulated SEs to determine the percentage of
items that meet the cutoff score determined in Step 2.
Each sample size from Step 3 will have multiple simula-
tions, and therefore, create an average percentage score
for each sample size for Step 5.

Find the minimum sample size so that 80%, 85%, 90%,
and 95% of the items meet the cutoff score and can be
considered accurately measured. We recommend these
scores to ensure that most items are accurately measured,
in a similar vein to the common power-criterion sugges-
tions. Each researcher can determine which of these is
their minimum or maximum sample size (e.g., individu-
als can choose to use 80% as a minimum and 90% as a
maximum or use values from Step 3 based on resources).

Report results

6) Report these values, and designate a minimum sample
size, the cutoff/stopping rule criterion, and the maximum
sample size. Each researcher should also report if they
plan to use an adaptive design, which would stop data
collection after meeting the cutoff criterion for each item.

These steps are summarized in Table 1 on the left-hand
side. We will first demonstrate the ideas behind the steps
using open data (Balota et al., 2007; Brysbaert et al., 2014).
This example will reveal a few areas of needed exploration
for the steps. Next, we portray simulations for the proposed
procedure and find solutions to streamline and improve the
sample size estimation procedure. Table 1 shows the results
of the simulations and solutions on the right-hand side.
Finally, we include additional resources for researchers to
use to implement the estimation procedure.

Example

In this section, we provide an example of the suggested
procedure. The first dataset includes concreteness ratings
from Brysbaert et al. (2014). Instructions given to partici-
pants denoted the difference between concrete (i.e., “refers
to something that exists in reality”’) and abstract (i.e., “some-
thing you cannot experience directly through your senses or
actions”) terms. Participants were then asked to rate the con-
creteness of terms using a 1 (abstract) to 5 (concrete) scale.
This data represents a small-scale dataset (i.e., the range of
the scale of the data is small, 4 points) that could be used
as pilot data for a study using concrete word ratings. The

Table 1 Proposed procedure for powering studies with multiple items
Step Proposed steps Updated steps
1 Use representative pilot data. Use representative pilot data.
2 Calculate the standard error of each of the items in the pilot data. Calculate the standard error of each of the items in the pilot data.
Determine the appropriate SE for the stopping rule. Using the 4th decile, determine the cutoff and stopping rule for
the standard error of the items.
3 Create simulated samples of your pilot data, starting with at least Create simulated samples of your pilot data, starting with at least
20 participants, up to a maximum number of participants. 20 participants, up to a maximum number of participants.
4 Calculate the standard error of each of the items in the simulated Calculate the standard error of each of the items in the simulated
data. From these scores, calculate the percent of items below the data. From these scores, calculate the percent of items below the
cutoff score from Step 2. cutoff score from Step 2.
5 Determine the sample size at which 80%, 85%, 90%, 95% of Determine the sample size at which 80%, 85%, 90%, 95% of
items are below the cutoff score. items are below the cutoff score. Use the correction formula to
adjust your proposed sample size based on pilot data size, power,
and percent variability.
6 Report all values. Designate one as the minimum sample size, Report all values. Designate one as the minimum sample size,

the cutoff score as the stopping rule for adaptive designs, and the
maximum sample size.

the cutoff score as the stopping rule for adaptive designs, and the
maximum sample size.
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data is available at https://osf.io/qpmf4/ (see the following
for thoughts on analyzing ordinal rating data: Biirkner &
Vuorre, 2019; 2023; 2018; 2022.

The second dataset includes a large-scale dataset (i.e.,
a wide range of possible data values) with response laten-
cies, the English Lexicon Project (ELP, Balota et al., 2007).
The ELP consists of lexical decision response latencies for
written English words and pseudowords. In a lexical deci-
sion task, participants simply select “word” for real words
(e.g., dog) and “nonword” for pseudowords (e.g., wug). The
trial-level data are available here: https://elexicon.wustl.edu/.
Critically, in each of these datasets, the individual trial-level
data for each item is available for simulation and calculation
of standard errors. Data that have been summarized could
potentially be used, as long as the original standard devia-
tions for each item are present. From the mean and standard
deviation for each item, a simulated pilot dataset could be
generated for estimating new sample sizes. All code to esti-
mate sample sizes is provided on our OSF page, and this
manuscript was created with a papaja (Aust et al., 2022)
formatted Rmarkdown document.

For this example, imagine a researcher who wants to deter-
mine the differences in response latencies for abstract and
concrete words. They will select n = 40 words from the rat-
ing data from Brysbaert et al. (2014) that are split evenly into
abstract and concrete ends of the rating scale. In the exper-
iment, each participant will be asked to rate the words for
their concreteness and then complete a lexical decision task
with these words as the phenomenon of interest. Using both
datasets and the procedure outlined above, we can determine
the sample size necessary to ensure adequately measured
concreteness ratings and response latencies.

Step 1. The concreteness ratings data include 27,031 con-
cepts that were rated for their concreteness. We randomly

Table 2 Sample-size estimates by decile for example study

selected n = 20 abstract words (Mpgaring <= 2) and n = 20
concrete words (MRaring >= 4). In the original study, not
every participant rated every word, which created uneven
sample sizes for each word. Further, participants were
allowed to indicate they did not know a word, and those
responses were set to missing data. In our sample of 40 words,
the average pilot sample size was 28.52 (SD = 1.80), and we
will use 29 as our pilot sample size for the concreteness rat-
ings (this information will be used in the follow-up to the
simulation study). We first selected the same real words in
the ELP data as the concreteness subset selected above, and
these data include 27,031 real words. The average pilot sam-
ple size for this random sample was 32.67 (SD = 0.57), and
n =33 will be our pilot size for the lexical decision task.

Step 2. Table 2 demonstrates the cutoff scores for deciles
of the SEs for the concreteness ratings and lexical deci-
sion response latency items. A researcher could potentially
pick any of these cutoffs or other percentage options not
shown here (e.g., 3.5th decile). We will use simulation to
determine the suggestion that best captures the balance of
adequately powering our sample and feasibility. This com-
ponent is explored in the Data simulation section.

Steps 3-5. The pilot data were then simulated with replace-
ments, creating samples of 20 to 300 participants per item,
increasing in units of 5, for concreteness ratings and lexical
decision latencies separately (Step 3). Each of these 57 sam-
ple sizes was then repeated 500 times. The SE of each item
was calculated for the simulated samples separately for con-
creteness ratings and lexical decision times (Step 4), and the
average percentage of items for each sample size (averaging
across the 500 simulations) below each potential cutoff was
gathered for each (Step 5). The smallest sample size with at
least 80%, 85%, 90%, and 95% of items below the cutoff are
reported in Table 2 for each task (Step 5).

Deciles CSE C80 C385 C90 C95 LSE L 80 L85 L 90 L95
Decile 1 0.11 115 125 135 150 33.70 170 200 245 345
Decile 2 0.14 65 70 75 85 46.88 90 105 130 180
Decile 3 0.17 50 55 60 65 50.45 80 95 115 160
Decile 4 0.18 45 45 50 55 56.93 60 75 90 125
Decile 5 0.19 40 45 45 50 65.23 50 60 70 95
Decile 6 0.21 35 35 40 45 72.51 40 45 60 80
Decile 7 0.21 35 35 40 45 81.21 30 40 50 65
Decile 8 0.23 30 30 35 40 94.19 25 30 35 50
Decile 9 0.25 25 30 30 35 114.51 20 20 25 35

Note. C = Concreteness rating, L = Lexical decision response latencies. Estimates are based on meeting at least the minimum
percent of items (e.g., 80%) but may be estimated over that amount (e.g., 82.5%). SE columns represent the standard error
value cutoff for each decile, while 80/85/90/95% columns represent the sample size needed to have that percent of items
below the SE cutoff. For example, 150 participants are required to ensure at least 95% of concreteness items SE are below
the 1st decile SE cutoff, and 345 participants are necessary for the lexical decision SE to be below its 1st decile cutoff
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Step 6. In the last step, the researcher would indicate their
smallest sample size, the cutoff SE criterion if they wanted
to adaptively test (e.g., examine the SE after each participant
and stop data collection if all items reached criteria), and
their maximum sample size. As mentioned earlier, the decile
for a balanced SE cutoff is unclear and without guidance, a
potential set of researcher degrees of freedom could play a
role in the chosen cutoff (Simmons et al., 2011). Even though
both measurements (ratings and response latencies) appear to
converge on similar sample size suggestions for each decile
and percent level, the impact of scale size (i.e., concreteness
ratings 1-5 versus response latencies in ms 0-3480) and het-
erogeneity of item standard errors (concrete SDgp = 0.28
and lexical SDgp = 140.83) is not obvious. Last, by select-
ing the ends of the distribution for our concreteness words,
the skew of the distribution may additionally impact our esti-
mates. Each of these will be explored in our simulation.

Simulation method

In order to evaluate our approach, we used data simula-
tion to create representative pilot datasets of several popular
cognitive scales (1-7 measurements, 0—100 percentage mea-
surements, and 0-3000 response latency type scale data). For
each of these scales, we also manipulated item heterogene-
ity by simulating small differences in item variances to large
differences in item variances based on original scale size. On
each of the simulated datasets, we applied the above proposed
method to determine how the procedure would perform and
evaluated what criteria should be used for cutoff selection
(Step 2). This procedure was performed on distributions in
the middle of the scale (i.e., symmetric) and at the ceiling of
the scale (i.e., skewed). With this simulation, we will answer
several questions:

1) How do pilot data influence sample size suggestions?

A. How does scale size impact sample size estimations?
In theory, the size of the scale used should not impact the
power estimates; however, larger scales have a potential for
more variability in their item standard deviations (see point
O).

B. How does distribution skew impact sample size estima-
tions? Skew can potentially decrease item variance hetero-
geneity (i.e., all items are at ceiling, and therefore, variance
between item standard errors is low) or could increase hetero-
geneity (i.e., some items are skewed, while others are not).
Therefore, we expect skew to impact the estimates in the
same way as point C.

C. How does heterogeneity impact sample size estima-
tions? Heterogeneity should decrease power (Alexander &

@ Springer

DeShon, 1994; Rheinheimer & Penfield, 2001), and thus,
increased projected sample sizes should be proposed as het-
erogeneity of item variances increases.

2) Do the results match what one might expect for traditional
power curves? Power curves are asymptotic; that is, they
“level off” as sample size increases. Therefore, we expect
that our procedure should also demonstrate a leveling off
effect as the pilot data sample size increases. For example,
if one has a 500-person pilot study, our simulations should
suggest a point at which items are likely measured well,
which may have happened well before 500.

3) What should the suggested cutoff standard SE be?

Data simulation

Table 3 presents the variables and information about the sim-
ulations as a summary.

Population We simulated data for 30 items using the rnorm
function assuming a normal distribution. Each item’s popu-
lation data were simulated with 1000 data points. Items were
rounded to the nearest whole number to mimic scales gen-
erally collected by researchers. Items were also rounded to
their appropriate scale endpoints (i.e., all items below 0 on a
1-7 scale were replaced with 1, etc.).

Datascale The scale of the data was manipulated by creating
three sets of scales. The first scale was mimicked after small
rating scales (i.e., 1-7 Likert-type style, treated as interval
data) using a u = 4 with a o0 = .25 around the mean to cre-
ate item mean variability. The second scale included a larger
potential distribution of scores with a = 50 (o = 10) imitat-
ing a 0—100 scale. Last, the final scale included a ;« = 1000 (o
= 150) simulating a study that may include response latency
data in milliseconds. For the skewed distributions, the item
means were set to u = 6, 85, and 2500, respectively, with the
same o values around the item means. Although there are

Table 3 Parameter values for data simulation

Information Likert Percent Milliseconds
Minimum 1.00 0.00 0.00
Maximum 7.00 100.00 3,000.00

n 4.00 50.00 1,000.00
Skewed 6.00 85.00 2,500.00

o, 0.25 10.00 150.00

o 2.00 25.00 400.00
Small o, 0.20 4.00 50.00
Medium o, 0.40 8.00 100.00
Large o, 0.80 16.00 200.00
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many potential scales, these three represent a large number
of potential variables commonly used in the social sciences.
As we suggest, item variances are a key factor in estimating
sample sizes, and the scale of the data significantly influences
the potential variance. Smaller data ranges (1-7) cannot nec-
essarily have the same variance as larger ranges (0—100).

Item Heterogeneity Next, item heterogeneity was included
by manipulating the potential variance for each individual
item. For small scales, the variance was set to o = 2 points
with a variability of .2, .4, and .8 for low, medium, and
high heterogeneity in the variances between items. For the
medium scale of the data, the variance was o = 25 with a
variance of 4, 8, and 16. Finally, for the large scale of the
data, the variance was o = 400 with a variance of 50, 100,
and 200 for heterogeneity. These values were based on the
proportion of the overall scale and potential variance.

Pilot data samples Each of the populations shown in Table 3
was then sampled as if a researcher were conducting a pilot
study. The sample sizes started at 20 participants per item,
increasing in units of ten up to 100 participants. Each of
these samples would correspond to Step 1 of the proposed
method, where a researcher would use pilot data to start their
estimation. Therefore, the simulations included 3 scales X
3 heterogeneity values X 2 symmetric/skewed distributions
X 9 pilot sample sizes representing a potential Step 1 of our
procedure.

Assumptions Our procedure does not assume normality of
the data. To illustrate this, we simulated populations with
normal, skewed, and bimodal distributions (in special con-
siderations section). What the procedure requires is that
item-level scores are sampled from a reasonably stable dis-
tribution with finite moments (i.e., mean and variance exist).
The method evaluates variability in standard errors rather
than relying on strict distributional forms. Thus, while we
show results under both normal and non-normal populations,
the logic of the procedure is distribution-agnostic provided
these basic moment conditions are met.

Researcher sample simulation

In this section, we simulate what a researcher might do if
they follow our suggested application of AIPE to sample
size planning based on well-measured items. Assuming that
each pilot sample represents a dataset that a researcher has
collected (Step 1), the SEs for each item were calculated to
mimic the AIPE procedure of finding a sufficiently narrow
window. SEs were calculated at each decile of the items up
to 90% (i.e., 0% smallest SE, 10% ..., 90% largest SE). The
lower deciles would represent a strict criterion for accurate

measurement, as many items would need smaller SEs to meet
cutoff scores, while the higher deciles would represent less
strict criteria for cutoff scores (Step 2).

We then simulated samples of 20 to 2000 increasing in
units of 20 to determine what the new sample size suggestion
would be (Step 3). We assume that samples over 500 may be
considered too large for many researchers who do not work
in teams or have participant funds. However, the sample size
simulations were estimated over this amount to determine the
pattern of suggested sample sizes (i.e., the function between
original pilot sample size and projected sample size).

Next, we calculated the percentage of items that fell below
the cutoff score, and therefore, would be considered well-
measured for each decile by sample (Step 4). From these
data, we pinpoint the smallest suggested sample size at which
80%, 85%, 90%, and 95% of the items fall below the cutoff
criterion (Step 5). These values were chosen as popular, yet
arbitrary, measures of power in which one could determine
the minimum suggested sample size (potentially 80% of the
items) and the maximum suggested sample size (selected
from a higher percentage, such as 90% or 95%).

In order to minimize the potential for random quirks to
arise, we simulated the sample selection from the population
100 times and the researcher simulation 100 times for each
of those selections. This resulted in 1,620,000 simulations
of all combinations of variables (i.e., scale of the data, het-
erogeneity, data skew, pilot study size, researcher simulation
size). The average of these simulations is presented in the
results.

Simulation results
Pilot data influence on sample size

For each variable, the plot of the pilot sample size, projected
sample size (i.e., what the simulation suggested), and power
levels are presented below. The large number of variables
means we cannot plot them all simultaneously, and therefore,
we averaged the results across other variables for each plot.
All the datasets can be examined on our OSF page.

Scale size

Figure 1 demonstrates the influence of scale size on the
results separated by potential cutoff decile level. The black
dots denote the original sample size for reference. Larger
scales have more potential variability, and therefore, we see
that percent and millisecond scales project a larger required
sample size. This relationship does not appear to be linear
with scale size, as percent scales often represent the high-
est projected sample size. Potentially, this finding is due to
the larger proportion of possible variance — the variance of
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Fig. 1 Simulated pilot sample size and final projected sample size to achieve 80%, 85%, 90%, and 95% of items below threshold. These values
are averaged over all other variables, including decile. Black dots represent original sample size for reference

the item standard deviations / total possible variance — was
largest for percent scales in this set of simulations (ppercent
=.13). This finding may be an interaction with heterogeneity,
as the Likert scale had the next highest percent variability in
item standard errors (ppirer: =.10), followed by milliseconds

(pMillisecunds =.06).
Skew

Figure 2 displays that ceiling distributions, averaged over all
other variables, show slightly higher estimates than symmet-
ric distributions. This result is consistent across scale type
and heterogeneity, as results indicated that they are often the
same or slightly higher for ceiling distributions.

Item heterogeneity
Figure 3 displays the results for item heterogeneity for dif-

ferent levels of potential power. In this figure, we found that
our suggested procedure does capture the differences in het-

@ Springer

erogeneity. As heterogeneity increases in item variances, the
proposed sample size also increases.

Using a regression model, we predicted proposed sample
size using pilot sample size, scale size, proportion variabil-
ity (i.e., heterogeneity), and data type (symmetric, ceiling).
As shown in Table 4, the largest influence on the proposed
sample size is the original pilot sample size, followed by the
proportion of variance/heterogeneity, and then data and scale
sizes.

Projected sample size sensitivity to pilot sample size

In our second question, we examined whether the suggested
procedure was sensitive to the amount of information present
in the pilot data. Larger pilot data is more informative, and
therefore, we should expect a lower projected sample size. As
shown in each figure presented already, we do not find this
effect. These simulations from the pilot data would nearly
always suggest a larger sample size — mostly in a linear trend
increasing with sample sizes. This result comes from the



Behavior Research Methods (2026) 58:48

Page9of26 48

80% of items 85% of items
150 A
10041
N
D 50 A
Qo
[}
&
(%) 90% of items 95% of items
ko]
1]
O
2
o
o 1504
1001
50 A

100 20 40 60 80 100

Pilot Sample Size

Scale Skew

Fig. 2 Simulated pilot sample size and final projected sample size to
achieve 80%, 85%, 90%, and 95% of items below threshold. In com-
parison to Fig. 1, this figure shows the projected sample size for ceiling

nature of the procedure — if we base our estimates on a SE
cutoff, we will almost always need a bit more people for
items to meet those goals. This result does not achieve our
second goal.

Therefore, we suggest using a correction factor on the
simulation procedure to account for the known asymptotic
nature of power (i.e., at larger sample sizes, power increases
level off). For this function in our simulation study, we com-
bined a correction factor for upward biasing of effect sizes
(Hedges’ correction) with the formula for exponential decay
calculations. The decay factor was calculated as follows:

loga(Npiior)

1 — Npijor — min(Ngimulation)
Npiiot

Npiior indicates the sample size of the pilot data minus the
minimum simulated sample size to ensure that the smallest

Ceiling Symmetric

versus symmetric distributions on each scale. All other variables are
averaged together, and black dots represent original sample size for
reference

sample sizes do not decay (i.e., the formula zeroes out). This
value is raised to the power of log, of the sample size of
the pilot data, which decreases the impact of the decay to
smaller increments for increasing sample sizes. This value
is then multiplied by the projected sample size. As shown in
Fig. 4, this correction factor produces the desired quality of
maintaining that small pilot studies should increase sample
size, and that sample size suggestions level off as pilot study
data sample size increases.

Corrections for individual researchers

We have shown that this procedure, with a correction fac-
tor, can perform as desired. However, within real scenarios,
researchers will only have one pilot sample, not the various
simulated samples shown above. What should the researcher
do to adjust their projected sample size based on their own
pilot data simulations?
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Fig. 3 Simulated pilot sample size and final projected sample size to
achieve 80%, 85%, 90%, and 95% of items below threshold. In com-
parison to Figs. 1 and 2, this figure shows projected sample size or

To explore if we could recover the corrected sample
size from data a researcher would have, we used regression
models to create a formula for researcher correction. The
researcher employing our procedure would have the possi-
ble following variables from their simulations on their (one)
pilot dataset: 1) proposed sample size, 2) pilot sample size, 3)
estimate of heterogeneity for the items, 4) and the estimated
percent of items below the threshold. Given the non-linear

Table 4 Prediction of proposed sample size from simulated variables

Small Heterogeneity

Medium Heterogeneity —e— Large Heterogeneity

differing amounts of heterogeneity on each scale. All other variables
are averaged together, and black dots represent original sample size for
reference

nature of the correction, we added each variable and its non-
linear 1og2 transform to the regression equation, as this
function was used to create the correction. The intercept-
only model was used as a starting point (i.e., corrected
sample ~ 1), and then all eight variables (each variable
and their 1og2 transform) were entered into the regression
equation.

Term Estimate

SE t p pr
Intercept -27.30 3.08 -8.87 <.001 335
Pilot Sample Size 1.51 0.03 54.76 <.001 951
Scale: Likert v Percent 7.00 1.80 3.89 < .001 .088
Scale: Likert v Millisecond 25.63 1.87 13.74 < .001 .548
Proportion Variability 312.44 19.86 15.73 < .001 613
Data: Ceiling v Symmetric -7.16 141 -5.08 < .001 142

@ Springer



Behavior Research Methods (2026) 58:48

Page110f26 48

80% of items

85% of items

901

60 —

20 /

90% of items

95% of items

Projected Sample Size

30 1

ZZj /

1 (I)O 20 40 60 80 100

Pilot Sample Size

Item Heterogeneity

Small Heterogeneity

Medium Heterogeneity —®— Large Heterogeneity

Fig.4 Corrected projected sample sizes for variability and power levels to achieve 80%, 85%, 90%, and 95% of items below threshold. All other
variables are averaged together, and black dots represent original sample size for reference

As shown in Table 5, all variables were significant pre-
dictors of the new sample size. Proposed sample size and
original sample size were the largest predictors — unsurpris-
ing given the correction formula employed — followed by
the percent “power” level and proportion of variance. This

Table 5 Parameters for all decile cutoff scores

Term Estimate SE t p
Intercept 111.049  78.248  1.419 .156
Projected sample size 0.429 0.002 185.360 <.001
Pilot sample size 15.434 3.617 4.267 <.001
Log?2 projected sample ~ -0.718 0.007 -103.787 < .001
size

Log2 pilot sample size ~ 0.606 0.259 2.343 .019
Log2 power 19.522 0.215 90.693 < .001
Proportion variability -0.729 0.232 -3.143 .002
Log2 proportion vari-  4.655 0.269 17.296 <.001
ability

Power -39.367 15.640 -2.517 .012

formula approximation captures R> = .99 of the variance
in sample size scores and should allow a researcher to esti-
mate based on their own data, F'(8,4527) = 67,497.54,
p < .001. We provide convenience functions in our addi-
tional materials to assist researchers in estimating the final
corrected sample size.

Choosing an appropriate cutoff

Last, we examined the question of an appropriate SE decile.
The minimum and first two deciles are likely too restric-
tive, providing very large estimates that do not always find
a reasonable sample size in proportion to the pilot sample
size, scale size, and heterogeneity. If we examine the R? val-
ues for each decile of our regression equation separately, we
find that the values are all R? > .99 with very little differ-
ences between them. Figures 5 and 6 illustrate the corrected
scores for simulations at the 4th and 5th decile recommended
cutoff for item standard errors. For small heterogeneity, dif-
ferences in deciles are minimal, while larger heterogeneity
shows more correction at the 4th decile range, especially for
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Fig.5 Comparison of the cutoffs for 4th deciles across heterogeneity (columns), powering of items (rows), and scale size (color)

scales with larger potential variance. Therefore, we would
suggest the 4th decile to overpower each item for Step 2.

The final formula for 4th decile correction is provided in
Table 6. The proportion of variance can be calculated with
the following:

SDjtemsD

(Maximum—Minimum)?
7\

@ Springer

where maximum and minimum are the max and min values
found in the scale (or the data, if the scale is unbounded).
This formula would be applied in Step 5 of the proposed
procedure. While the estimated coefficients could change
given variations on our simulation parameters, the general
size and pattern of coefficients were consistent, and there-
fore, we believe this correction equation should work for a
variety of use cases. We will now demonstrate the final pro-
cedure on the example provided earlier.
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Fig.6 Comparison of the cutoffs for Sth deciles across heterogeneity (columns), powering of items (rows), and scale size (color)

Updated example

The updated proposal steps are in Table 1 on the right-hand
side. The main change occurs in Step 2 with a designated
cutoff decile, and Step 5 with a correction score. Using the
data from the 4th decile in Table 2, we can determine that
the stopping rule SE for concreteness ratings would be 0.18,
and the stopping rule SE for lexical decision times would be
56.93. For Step 5, we apply our correction formula separately
for each one, as they have different variability scores, and

these scores are shown in Table 7. Each row was multiplied
by row one’s formula, and then these scores are summed
for the final corrected sample size. Sample sizes cannot be
proportional, so we recommend rounding up to the nearest
whole number.

For one additional consideration, we calculated the poten-
tial amount of data retention given that participants could
indicate they did not know a word (Mypswereq = 0.93, SD =
0.11) in the concreteness task or answer a trial incorrectly
in the lexical decision task (M orrec; = 0.80, SD = 0.21).
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Table 6 Parameters for 4th decile cutoff scores

Term Estimate SE t p
Intercept 206.589  128.861 1.603 .109
Projected sample size 0.368 0.005 71.269 < .001
Pilot sample size -0.770 0.013 -59.393 < .001
Log2 projected sample 27.541 0.552 49.883 < .001
size

Log?2 pilot sample size 2.583 0.547 4.725 <.001
Log2 power -66.151 25.760 -2.568 .010
Proportion variability 16.405 6.005 2.732 .006
Log2 proportion vari- -1.367 0.382 -3.577 <.001
ability

Power 1.088 0.426 2.552 .011

In order to account for this data loss, the potential sample
sizes were multiplied by ! where the denominator is

Pretained

the proportion retained for each task.

Additional materials
Package

We have developed functions to implement the sug-
gested procedure as part of a semantic priming-focused
package semanticprimeR. You can install the package
from GitHub using: devtools::install_github
("SemanticPriming/semanticprimeR" ). We detail
the functions below with proposed steps in the process.
Step 1. Ideally, researchers would have pilot data that
represented their proposed data collection. These data
should be formatted in long format, wherein each row
represents the score from an item by participant, rather
than wide format, wherein each column represents an
item and each row represents a single participant. The
tidyr::pivot_longer () or reshape::melt ()
functions can be used to reformat wide data. If no pilot data
is available, the simulate_population() function
can be used with the following arguments (and example
numbers, * indicates optional). This function will return a
dataframe with the simulated normal values for each item.

# devtools::install_github ("SemanticPri
ming/semanticprimeR")

library (semanticprimeR)

pops <- simulate population(mu = 4, # it
em means
mu_sigma = .2,
means

# variability in item

# item standard deviations
sigma_sigma = .2, # standard deviation

sigma = 2,

@ Springer

of the standard deviations

number_items = 30, # number of items
number_scores = 20, # number of parti
cipants

smallest_sigma = .02,
ible standard deviation
min_score = 1, #* minimum score for tr
uncating purposes

max_score = 7, #* maximum score for tr
uncating purposes

digits = 0) #* number of digits for ro
unding

#* smallest poss

head (pops)

## item score

## 1 1 3
## 2 2 5
## 3 3 6
## 4 4 5
## 5 5 5
## 6 6 7

Step 2. Instep 2, wecanuse calculate_cutoff () to
calculate the standard error of the items, the standard devia-
tion of the standard errors, and the corresponding proportion
of variance possible, and the 4th decile cutoff score. The
pops dataframe can be used in this function, which has
columns named item for the item labels (ie., 1, 2, 3, 4
or characters can be used), and score for the dependent
variable. This function returns a list of values to be used in
subsequent steps.

cutoff <- calculate_cutoff (population =
pops, # pilot data or simulated data
grouping_items = "item", # name of the
item indicator column

score = "gcore", # name of the depende
nt variable column

minimum = 1, # minimum possible/found
score

maximum = 7) # maximum possible/found
score

cutoffése_items # all standard errors of
items

## [1] 0.4285840 0.3618301 0.3561490
0.3211820 0.3938675 0.3661679 0.4679181
## [8] 0.2643264 0.3524351 0.2663101
0.4772454 0.4222434 0.4369451 0.4173853
## [15] 0.3266658 0.3871284 0.3802700
0.3913539 0.4701623 0.3802700 0.4142209
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## [22] 0.3441236 0.3732856 0.4032761
0.4013136 0.3515005 0.3647277 0.3966969
## [29] 0.3925289 0.3598245

cutoff$sd _items # standard deviation of
the standard errors

## [1] 0.05056835

cutoff$cutoff # 4th decile score

#4# 40%
## 0.3704385

cutoff$prop_var # proportion of possibl
e variance

## [1] 0.01685612

Step 3. The simulate_samples () function creates
simulated samples from the pilot or simulated population
data to estimate the number of participants needed for item
standard error to be below the cutoff calculated in Step 2.
This function returns a list of samples with sizes that start
at the start size, increase by increase, and end with
the stop sample size. The population or pilot data will be
included in population, and the item column indicator
should be included in grouping_items. The nsimargu-
ment determines the number of simulations to run.

samples <- simulate_samples(start = 20,
# starting sample size

stop = 100, # stopping sample size

increase = 5, # increase simulated sam
ples by this amount
population = pops,
ot data

replace = TRUE,
ement?

nsim = 500,

# population or pil

# simulate with replac

# number of simulations to

run
grouping items = "item") # item column
label

head (samples[[1]1])

## # A tibble: 6 x 2

## # Groups: item [1]

## item score
## <int> <dbl>

#4# 1 1 3
## 2 1 4
## 3 1 3
## 4 1 4
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## 5 1 4
## 6 1 4

Step 4 and 5. The proportion of simulated items across
sample sizes below the cutoff score can then be calcu-
lated using calculate_proportion (). This function
returns a dataframe that includes each sample size and
the proportion of items below the cutoff for use in the
next function. The samples and cutoff arguments
were previously calculated with our functions. The col-
umn for item labels and dependent variables are included
as grouping_items and score arguments to ensure the
right calculations.

proportion_summary <-
calculate_proportion(samples = samples,
# samples 1list

cutoff = cutoff$cutoff,

# cut off score
grouping_items =
# item column name

"score")
# dependent variable column name

"item",

score =

head (proportion_summary)

## # A tibble: 6 x 2
## sample_size percent_below

## <dbl> <dbl>
## 1 20 0.493
## 2 25 0.758
## 3 30 0.913
## 4 35 0.978
## 5 40 0.998
## 6 45 1

Step 6. Last, we use the calculate_correction()
function to correct the sample size scores given the pro-
posed correction formula. The proportion_summary
from above is used in this function, along with required infor-
mation about the sample size, proportion of variance from
our cutoff calculation, and what power levels should be cal-
culated. Note that the exact percent of items below a cutoff
score will be returned if the values in power_levels are
not exactly calculated. The final summary presents the small-
est sample size, corrected, for each of the potential power
levels.

corrected_summary <-
calculate correction/(
proportion_summary =
proportion_summary,

# prop from above
pilot_sample_size = 20,
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# number of participants in the pilot
data

proportion_variability =
cutoff$prop_var,

# proportion variance from cutoff scores
power_levels = c¢(80, 85, 90, 95))

# what levels of power to calculate

corrected_summary

## # A tibble: 4 x 3
## percent_below sample_size correcte
d_sample_size

## <dbl> <dbl> <dbl>
## 1 91.3 30 25.4
## 2 91.3 30 25.4
## 3 91.3 30 25.4
## 4 97.8 35 33.9

These corrected values represent the final recommended
minimum sample sizes for achieving the specified precision
thresholds (e.g., 90%, 95%). Researchers can use these num-
bers directly to determine the target N for their main study,
and to define a feasible range of sample sizes. In practice,
the corrected N can serve as the minimum sample size, while
researchers may also set a maximum sample size based on
available resources, and optionally apply sequential monitor-
ing rules to stop data collection early if the desired precision is
reached. These corrected estimates translate the pilot-based
procedure into concrete targets that researchers can use when
planning and monitoring data collection.

Special considerations
Pilot sample size

Smaller pilot samples may be expected to show greater
variability than larger samples or the full population. This
variability could influence the sample size recommendations
generated by our procedure. At the same time, the opti-
mal size of the pilot sample was an open question in our
framework. To address these questions, we ran simulations
designed to identify the smallest pilot sample size that would
minimize variability across researchers while also reducing
bias when comparing pilot-derived estimates to population
values. In these simulations, 100 researchers each drew a pilot
sample from the same target population and applied our pro-
cedure. We generated nine populations (the combinations of
scale size and heterogeneity described above), each with 30
items (simulate_population). For each population,

we varied the pilot sample size across 20, 25, 30, 35, and
40. Each simulated researcher then ran 500 replications,
drawing between 20 and 300 participants in increments of
5 (simulate_samples).

We evaluated three statistics from these simulations:

1. Variability of the recommended sample size. For each
target level, we calculated the average recommended N
and the standard deviation of that recommendation. Large
standard deviations indicate instability, meaning different
researchers could receive very different recommendations
from similar pilot studies.

2. Bias in item standard errors. For each item, we com-
pared the estimated SE from the sample to the true
SE from the population. A smaller bias reflects closer
agreement between pilot-based estimates and population
values. Because larger sample sizes and heterogeneity
simulations will naturally show larger SEs in general, we
calculated relative error by subtracting the estimated SE
minus the true SE divided by the true SE.

3. Cut-off bias. The cut-off was fixed at the 4th decile in the
population. For each pilot, we calculated the difference
between the pilot-derived cut-off and the population cut-
off. Smaller values indicate that pilot-derived thresholds
align more closely with the population criterion. Again,
we used the relative error by dividing by the true SE cut-
off score to be able to compare across simulations.

Results consistently indicated that smaller pilots produced
less stable and a bit more biased recommendations. As shown
in Fig. 7, the standard deviation of the recommended sam-
ple size was higher at pilot sizes of 20 and 25, particularly
in large-scale, high-variance populations. This instability
means that two researchers running similar small pilots could
easily obtain divergent recommended Ns. By contrast, pilot
sizes of 30 or larger substantially reduced this variability, and
further increases to 35 or 40 provided little additional gain.
Bias measures told a similar story. Figure 8 shows that aver-
age item SE bias was near zero across most conditions, but
small pilots (20-25) tended to produce more negative bias
in large-scale populations. At pilot sizes of 30 and above,
SE bias converged toward zero across all conditions. Like-
wise, Figure 9 shows that relative cut-off bias was largest
when pilot sizes were small, again especially under high-
variance conditions, but shrank considerably by pilot size 30
and remained stable thereafter. Accordingly, we propose ~30
participants as a practical lower bound for pilot studies using
our procedure: large enough to ensure stability, accuracy, and
calibration across a wide range of scale and variance condi-
tions, but small enough to remain efficient.
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Fig.7 Average standard deviation of suggested sample sizes for small, medium, and large scale sizes and heterogeneity

Bimodal data

The above simulations assume symmetric population dis-
tributions with small, medium, or large heterogeneity or a
skewed distribution with the same heterogeneity. However,
as shown in Pollock (2018), rating data that appears normally
distributed at the aggregate level may in fact reflect the aver-
age of two distinct underlying distributions (i.e., a bimodal
distribution). In such cases, a pilot sample may misleadingly
suggest a single “middle” value that does not represent either
true subgroup. To examine our procedure with bimodal dis-
tributions, we estimated thirty items for three distributions:
symmetric, ceiling, and floor distributions for Likert data
with small heterogeneity. Bimodal data was created by select-
ing half of the ceiling distribution and floor distribution to
combine. The number of bimodal items was varied from 0 to
100% increasing by 10% increments for simulated samples.
Figure 10 shows an example of ten of the items within a sim-
ulation that estimated that half of the Likert items would be
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bimodal in nature. The researcher procedure described above
was then carried out using semanticprimeR.

Figure 11 portrays the results of the suggested procedure.
The sample with 0 bimodal items demonstrates the same val-
ues as above. The proposed sample size increases from 10
to 40% because of the heterogeneity in SE across items (i.e.,
with 10% of items with a larger SE due to their bimodal
nature, the required sample size increases). From 50% to
100% the sample size decreases because the variance of the
SEs across items decreases (i.e., at 100%, they are all larger
rather than a mix). In theory, these results map onto the con-
ceptual framework — if all items are truly bimodal, we have
precisely measured the mean of the bimodal distribution,
but this result is likely not the intended result. If researchers
expect these distributions (or have representative pilot data),
they could examine the data for bimodal items. These items
could be estimated separately (i.e., floor effects item 1, ceil-
ing effects item 1) to ensure that both populations of answers
are represented in the data.
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Combining tools

Researchers may often be interested in more than just the
precision for individual items. The estimation of power via
traditional power calculations for a statistical test or the reli-
ability of items could also be of interest for an appropriate
dataset for analysis. We would suggest that researchers com-
bine reliability with precision to collect data that are both
reliable and precisely measured. For example, one could use
our proposed procedure to calculate the sample size for preci-
sion. Separately, the researcher would determine the level of
reliability they would like to find in items based on previous
research or practical guidelines. The minimum sample size
could be set based on estimations for hypothesis testing, the
stopping rule based on minimum reliability and desired SE
for items, and a maximum sample size based on simulations
or practical matters. Each data collection represents a unique
scenario in which researchers can combine tools based on
their needs to collect precise, reliable, and (traditionally

defined) adequately powered data. While our proposal may
bring to mind the problems with researcher degrees of free-
dom (Simmons et al., 2011), transparent practices decisions
around sample size planning should be encouraged to limit
potential questionable research practices.

Vignettes

While the example in this manuscript was cognitive linguis-
tics focused, any research using repeated items as a unit of
measure could benefit from the proposed newer sampling
techniques. Therefore, we provide 12 example vignettes and
varied code examples on our OSF page/GitHub site for this
manuscript across a range of data types provided by the
authors of this manuscript. Examples include psycholinguis-
tics (De Deyne et al., 2008; Heyman et al., 2014; Montefinese
et al., 2022), social psychology data (Grahe et al., 2022;
Peterson et al., 2022; Ulloa et al., 2014), COVID related
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data (Montefinese et al., 2021), and cognitive psychology
(Barzykowski et al., 2019; Errington et al., 2021; Roer et
al., 2013). These can be found on the package tutorial page:
https://semanticpriming.github.io/semanticprimeR/.

Discussion

We proposed a method combining AIPE and Monte Carlo
simulation to estimate a minimum and maximum sample size
and to define a rule for stopping data collection based on
narrow windows on a parameter of interest. In addition, we
also demonstrated its practical applications using real-world
data. We contend that this procedure is specifically useful
for studies with multiple items that intend to use item-level
focused analyses; furthermore, the utility of measuring each
item well can extend to many analysis choices. By focusing
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on collecting quality data, we can suggest that the data is
useful, regardless of the outcome of any hypothesis test.
One limitation of these methods would be our decision
to use datasets with very large numbers of items to simu-
late what might happen within one study. For example, the
English Lexicon Project includes thousands of items, and
if we were to simulate for all of those, our results would
likely suggest needing thousands of participants for most
items to reach the criterion. Additionally, as the number of
items increases, you may also see very small estimates for
sample size due to the correction factor (as with large num-
bers of items, you could find many items with standard errors
below the 4th decile). Therefore, it would be beneficial to
consider only simulating what a participant would reason-
ably complete in a study. Small numbers of repeated items
usually result in larger sample sizes proposed from the origi-
nal pilot data. This result occurs because the smaller number
of items means more samples for nearly all to reach the cutoff
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criteria. These results are similar to what we might expect for
a power analysis using a multilevel model — larger numbers
of items tend to decrease the necessary sample size, while
smaller numbers of items tend to increase the sample size.
Second, these methods do not ensure the normal interpre-
tation of power, focusing on finding a specific effect for a
specific test, o, and so on. As discussed in the Introduction,
there is not necessarily a one-to-one mapping of hypothesis to
analysis; many of the estimations within a traditional power
analysis are just that—best approximations for various param-
eters. These proposed methods and traditional power analysis
could be used together to strengthen our understanding of
the sample size necessary for both a hypothesis test and a
well-tuned estimation. We would advise caution when resam-
pling pilot data (e.g., oversampling beyond the available pilot
sample) for power estimation. As Burns et al. (2023) note,
resampling introduces estimation bias that increases as sim-
ulated sample sizes approach the full pilot size. This bias can
occur not only for hypothesis tests but also when estimating
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descriptive statistics such as means, and it may distort power
estimates, particularly in small samples.

Researchers should consider this hybrid approach for
AIPE and simulation as a powerful tool for hypothesis testing
and parameter estimation. This procedure holds benefits for
various research studies, specifically replication studies, that
usually prioritize subject sample size but rarely item sample
size, in spite of the fact that item sample sizes can contribute
to power in multilevel models (Brysbaert & Stevens, 2018;
however, see Rouder & Haaf, 2018 for a discussion of the
item-sample size trade off). Replicated effects, accumulated
through multiple studies and accurate measurement, con-
tribute to robust meta-analyses, enhancing our understanding
of the genuine nature of observed effects. This article helps
to achieve this goal by encouraging researchers to conduct
studies where the power analysis is not based on the size of
the effect but on the precise measurement of the stimuli. We
argue that this article can be the initial step to apply AIPE,
allowing researchers to use item information to provide a
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more accurate and statistically reliable measure of the effect
we aimed to investigate. In conclusion, item power analy-
sis is a tool to avoid the waste of resources while ensuring
that items are adequately measured. Well-measured data can
enable us to counteract the literature that contains false posi-
tives, allowing us to achieve replicable, high-quality science
to establish answers to scientific questions with precision and
accuracy.
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